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Abstract 

For several years it has been possible to observe a strong correlation between the mortality rate and 

Extreme Meteorological Events (EWE) in Portugal. This relationship results from low levels of thermal 

comfort in buildings, a result not only of the building's constructive characteristics, but also of the 

meteorological conditions where it is located. The problem of energy poverty is further aggravated by 

the aging of society and low average income, which translates into insufficient levels of air conditioning. 

Some attempts to predict EWE have been made, but considering either heat waves or cold waves. The 

RELIABLE project aims to create a model for forecasting EWE for the whole year. Thus, within the scope 

of this thesis, building energy simulation models are compared in terms of reliability of results and 

calculation times. This research work compared Energy Plus, the 5R1C model and optimization tools, in 

particular Random Forest and Neural Networks. The models considered the thermal characteristics of 

nine existing building archetypes in Montalegre, Portugal. Simulation results were compared with real 

temperature measurements. This work shows that the simplified 5R1C model serves the purpose of 

forecasting EWE effect on building indoor temperature, due to the short computation time and its 

suitability for large buildings. 

 

Keywords 

thermal comfort, building simulation, simplified models, extreme weather events, energy poverty  
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Resumo 

Há vários anos que é possível constatar uma forte correlação entre a taxa de mortalidade e Eventos 

Meteorológicos Extremos (EME) em Portugal. Esta relação resulta de baixos níveis de conforto térmico 

em edifícios, fruto não apenas das características construtivas do edifício, mas também das condições 

meteorológicas onde este se encontra. O problema da pobreza energética é agravado ainda pelo 

envelhecimento da sociedade e baixo rendimento médio, que se traduz em níveis de climatização 

insuficientes. Algumas tentativas de prever EME foram realizadas, mas considerando ou ondas de calor 

ou vagas de frio. O projeto RELIABLE tem como objetivo criar um modelo para previsão de EME para 

todo o ano. Assim, no âmbito desta tese comparam-se os modelos de simulação energética em edifícios 

em termos de confiabilidade de resultados e tempos de cálculo. A pesquisa compara o Energy Plus, o 

modelo 5R1C e ferramentas de optimização, em particular Random Forest e Redes neuronais. Os 

modelos consideram as características térmicas de nove arquétipos de edifícios existentes em 

Montalegre, Portugal. Os resultados das simulações foram comparados com medições reais de 

temperatura. Este trabalho mostra que o modelo simplificado 5R1C serve o propósito de previsão do 

efeito de EME na temperatura interior dos edifícios, devido ao curto tempo de computação e sua 

adequação para grandes parques edificados. 

 

Palavras-chave 

Conforto térmico, simulação em edifícios, modelos simplificados, eventos meteorológicos extremos, 

pobreza energética  
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Chapter 1 

Introduction 

1. Introduction 

In this chapter context of the work is described. Next state of the art and what can be done regarding 

the issue described in context. Following with the description of RELIABLE project and the aim of this 

work. 
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1.1. Context / Overview 

For several years now a correlation between death rate and temperature in Portugal is observed. The 

peak death rates can be observed in winter and summer periods even though Portugal has one of the 

mildest winter climates  [8] [9]. Portugal is among countries with the highest mortality rates in Europe for 

both the summer and winter periods. The situation in which people are more likely to die in period of 

cold weather in countries with winter is rather mild is called “excess winter mortality paradox”. For 

example the ratio between Excess Winter Deaths and Heating Degree Days for Portugal is 5.7. This ratio 

is lower for colder European countries like Finland (4.0), Estonia (3.9) or Denmark (4.8)  [10] [11]. The 

older buildings in Portugal (before 1990) have no thermal insulation. Furthermore, heatwaves and cold 

waves and the increased mortality can be explained by the fact that the buildings do not meet minimum 

thermal requirements or have no cooling systems  [12]. This problem is being swelled by the ageing 

society and low average income. Elderly people have less ability to handle inadequate indoor 

temperatures which is the effect of fuel poverty. Although, increased mortality is connected to the age 

of people at this stage of the project only the dwelling is considered not the dwellers nor their age. For 

this is the next, future stage. There is an unofficial definition of fuel poverty: “anyone who meets in its 

housing particular difficulties to have necessary energy to meet its basic energy needs because of the 

inadequacy of its resources or of its housing conditions”  [13] [14]. Such a situation falls within the scope 

of energy poverty. Energy poverty has no universal definition since energy poverty is displayed 

differently in different countries. As most European countries have no official definition for the term 

“energy poverty”, this state is often described as “inability to keep homes adequately warm”  [15] (Figure 

2). It has been proven that such situation can affect the children indirectly when spending on food are 

reduced to afford fuel to keep the house warm. Therefore, energy poverty can be correlated with low 

income and high energy costs. Portugal belongs to the group of European countries that have high 

inability to keep homes adequately warm according to Alleviating fuel poverty in the EU. [2] (Figure 2). 

Heating consumption in Portugal decreased over the years 2010-2015 (economic crisis and taxation 

followed by increase of prices).  
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Figure 1 Average consumption per dwelling (at normal climate) [1] 

 

Figure 2 Inability to keep home adequately warm in Europe in 2012 based on Eurostat data  [2] 

Portugal when compared with neighbouring countries – for example Spain – has considerably smaller 

energy consumption per dwelling (Figure 1) even though both countries belong to the same climatic 

area. This brings a conclusion and confirms that the problem is connected with low average income. 

Portugal has one of the most unequal income distribution. According to Gini index, which represents the 

degree of inequality in wealth, Portugal with score 0.341 is 2.6 percentage points above OECD average 

of 0.315  [16]. Such situation results in less energy consumption and lower appetite for investments in 

building retrofitting. 
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1.2. State of the art 

From the reasons presented in the previous section stems the need for a quick and nationwide solution. 

A solution that is cheap but does not require physical interference with the building. Over the past few 

years, two projects were developed in Portugal: ÍCARO and FRIESA. Project ÍCARO, developed by 

INSARJ, is a nationwide health warning system which detects and monitors heatwaves and determines 

if the forecasted number of deaths is going to exceed the expected number of deaths  [17]. Initially it 

was created based on time series statistical model using dynamic regression and thresholds which were 

calibrated for Lisbon. The calibration was done concerning 1981-1991 heatwaves. Every day a report is 

made with the forecast for the next three days. The project is run only in the period between May and 

September and thus it is used only for heatwaves prediction. Its downside is the very low resolution 

because it divides Portugal into 5 regions. Recently there was an incentive made to update the system 

and upgrade it with distributed lag non-linear model (DLNM)  [18]. This upgrade would allow to analyse 

the relation of exposure to heat and the response effect (increased mortality). Together with this upgrade 

the calibration for newest data would be done. FRIESA is similar project to ICARO which started in 2014. 

It estimates and analyses the risk of cold waves and its potential impact on mortality [19]. It is used in 

the period from November to March. Currently, FRIESA covers only two districts: Porto and Lisbon. Both 

of those projects aims to provide decision makers with appropriate tool for handling the hazardous 

events associated with cold and hot on the population. 

1.3. RELIABLE project 

The projects briefly described above have some major flaws. Namely very low resolution and the need 

to use two different applications for different parts of the year. Also, these applications show only outside 

temperature or the predicted excess of deaths. Project RELIABLE has been started to develop a tool – 

real-time internet application – which will provide reliable data about indoor temperature for different 

types of buildings across Portugal  [20]. The dashboard will be a map with forecasted data of very high 

resolution. It will determine zones of dangerously high indoor temperatures in the summer and 

dangerously low indoor temperatures in the winter. The biggest advantages of this project are public 

availability through a websites of different public authorities (ADENE, INSA, municipal services) all year 

long and transparency of the data . The development of such an application will help local services more 

effectively focus resources in zones of concern and monitor the well-being of the citizens in danger 

zones. 

Such an ambitious enterprise requires a lot of computational power. Simulation for the whole of Portugal 

requires weather data from hundreds of points. The administrative division of Portugal is 18 districts 

which are divided into municipalities. 308 municipalities are further divided into 3092 parishes. 
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Simulation for 2 weeks ahead for every hour for 9 archetypes for the 308 municipalities, assuming 

1second for one iteration, would require 931392 iterations. A such number of iterations - roughly 

calculating - would take almost 11 days. Therefore, there is a need for a faster but reliable model  

1.4. Aim of this work 

This work aims to compare methods for indoor temperature predictions. Build a 5R1C model, test 

Machine Learning (ML) models, in particular Random Forest (RF) and Artificial Neural Networks (ANN) 

capabilities in this area. The models will be created based on energy certification data from buildings 

from different periods of construction. The results from the 5R1C, RF and ANN models will be then 

compared with results from EnergyPlus software and with real data. In theory, the 5R1C model should 

provide a faster computation of the results. If the accuracy of 5R1C, ML or ANN is reasonable and the 

computations times faster or comparable with Energy Plus, one of these models will be used for further 

proceedings in the RELIABLE project. The output from investigated models is not expected to be  exact 

as the real measurement. The objective is to get a general model of an archetype that  reflects the 

thermal behaviour of an envelope.
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Chapter 2 

Theoretical Background 

2. Theoretical Background 

This chapter describes the three models used during research (5R1C, Random Forest and Artificial 

Neural Network). It introduces the theory on which these models are based and gives description of the 

areas in which they are currently employed. 
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2.1. 5R1C model 

The model described in international standard EN ISO 52016-1:2017 consisting of five resistances 

and one capacity (5R1C) (Figure 3) is proposed as a simplified way for simulation of thermal 

behaviour of the building zone given the external weather data. The envelope is described as an 

equivalent electric circuit consisting of five resistances and one capacity which solution requires 

employment of limited input parameters. Roberto Bruno et al. investigated the performance of 5R1C 

model for multi-house building and concluded that over larger periods of time the fluctuations and 

time shift between simplified model and real data are too high especially in houses with high thermal 

capacities  [21]. Case described in this paper is different since data from dozens of buildings are 

averaged which already attenuates the possible fluctuations but also introduces some degree of 

inaccuracy. 

The main variables employed in the model are:  

• thermal transmission coefficients for walls with windows 𝐻𝑡𝑟,𝑤 ; for opaque walls 𝐻𝑡𝑟,𝑜𝑝. 

which is decoupled into 𝐻𝑡𝑟,𝑒𝑚 - the effective thermal mass which accumulates thermal 

energy - and 𝐻𝑡𝑟,𝑚𝑠 - surface thermal mass; 

• thermal transmission coefficient due to ventilation and infiltration losses 𝐻𝑣𝑒  

• thermal conductance 𝐻𝑡𝑟,𝑖𝑠 for coupling between surface temperature node 𝜃𝑠 and indoor 

temperature node 𝜃𝑎𝑖𝑟 ; 

• thermal capacity per floor area of the envelope 𝐶𝑚 ; 
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Figure 3 5R1C model  represented as electric scheme  [21] 

 

Other variables in the model: 

• Φint + Φsol represents the sum of incident solar radiation on an external surface of the 

envelope (Φsol ) and the internal gains from appliances and human presence (Φint ) 

divided between internal surfaces (𝜃s), mass node temperature (𝜃m) and indoor air node 

temperature (𝜃air); 

• ΦHC,nd heating or cooling power; can be an input when maintaining desire indoor 

temperature or an output; 

• 𝜃𝑠𝑢𝑝 ventilation stream air temperature; if there is only natural ventilation this value is 

equal to the outdoor temperature, for mechanical ventilation it can be set to appropriate 

value; 

• 𝜃𝑒 outdoor air temperature, provided as input from weather file; 

• 𝜃𝑠 internal surface average temperature, obtained as a result of preliminary calculation; 

• 𝜃𝑚 mass temperature of the opaque walls, obtained as a result of preliminary calculation; 

• 𝜃𝑎𝑖𝑟 indoor air temperature; the final result of the calculation; 

Since real buildings are simulated and the RC model does not have any library of materials to 

choose from the thermal capacity in the model is calculated manually. Materials used for equivalent 

parts of the building zones, namely walls, ceilings and floors, are defined by density, thickness, area 

and specific heat. Dimensions of the envelope, as well as the window area, are taken from Energy 

Plus envelope models. From the dimensions of the respective surfaces and their thermodynamic 

parameters, the thermal capacity was calculated. All the necessary data was carefully checked and 

assigned to the respective variables in the 5R1C model. 
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5R1C model considers direct and diffuse radiation. Algorithm calculates the angle at which sun 

shines on the dwelling’s windows based on the latitude and longitude of the location of interest and 

the altitude of the sun at every hour. Latitude and Longitude have been provided manually as 

following: 41.828 , -7.787 .  

2.2. Energy Plus 

Energy Plus® is a free, open-source program developed by the United States Department of Energy 

(DOE). Used mainly for the simulation of energy and water consumption. Energy Plus is a modular, 

structure-based program build on the most popular features and capabilities of BLAST (Building 

Loads Analysis and System Thermodynamics) and DOE-2.1E. One of the main advantages of this 

program is user-defined, sub-hourly time steps. Inputs and outputs are given in text files. The 

programme simulates air movements and interactions between zones. EnergyPlus is using the 

Transfer Function Method (TFM) for the calculation of thermal loads. This function has been adopted 

by ASHRAE and is regarded as one of the most accurate methods for the calculation of heating and 

cooling loads  [22]. The TFM method is to first compute heat gains from walls, windows, floors and 

roofs, and then by multiplying the heating loads by some heat transfer coefficients the cooling loads 

are calculated  [22]. EnergyPlus is a simulation engine to which one provides input data in text 

format. But this feature gives ultimate opportunity for to build applications to interface with Energy 

Plus. For a better user experience and for actually seeing the building geometry that is modelled 

Graphical User Interface (GUI) software can be used. There are a few free GUI software, Simergy, 

ModelMaker but OpenStudio – developed by National Renewable Energy Laboratory (NREL) and 

US DOE – together with Google SketchUp are one of the most popular.  

 

Figure 4 EnergyPlus internal elements / modules [3] 

EnergyPlus based on user’s description of the building, associated mechanical systems and 

weather data calculated heating and cooling loads necessary to maintain control setpoints through 

auxiliary HVAC systems and coil loads, as well as the energy consumption of primary plant 
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equipment and many others simulation details. All those additives are called modules (Figure 4) the 

structure of the model is built on the principle of management of those modules  [3]. One of them 

is advanced fenestration calculation module which includes controllable window blinds, 

electrochromic glazing, heat balances through window layers to properly assign solar energy 

absorbed by window panes and a library of commercially available windows. Anisotropic sky model 

module allows for calculation of diffuse solar energy on tilted surfaces  [3]. Such structure allows 

the model to employ only the modules that are necessary for the simulation and avoids going 

through the whole code. The individual modules sets global flags to inform the other models and 

the “Manager” about their status and whether to read input, initialize, simulate or report  [3]. 

2.3. Machine Learning methods  

In this work machine learning has been implemented in two approaches. Random Forest Regression 

and Artificial Neural Network has been considered. This has been done for two reasons. First, to 

verify if Machine Learning can be applied for simulation of EWE using general information about 

archetypes and second, as an attempt to make the model more autonomous and simplify the 

analysis. The models are described in detail in following subsections 

2.3.1. Random Forest Regression 

Machine Learning is a part of Artificial Intelligence branch. Random Forest is a supervised machine 

learning algorithm that is constructed from Decision Trees algorithms. It is applied in various 

industry fields such as e-commerce, health care and banking to predict outcomes or behaviour  [4]. 

Random Forest is used to solve regression and classification problems. It utilizes ensemble learning 

which is a technique that employs multiple times one algorithm in multiple combinations to provide 

a solution to a problem.  
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Figure 5 Generic scheme of Random Forest working principle [4] 

As the name suggests Random Forest consists of multiple Decision Trees (Figure 5) generated by 

the Random Forest algorithm The “forest” is trained through bagging or bootstrap aggregating 

which are ensemble meta-algorithms that improves the accuracy of ML algorithms. Those involves 

using different samples of training data rather just one sample. Number of trees and how those trees 

behave can be set during the building phase of the model. However, one of the features of Random 

Forest is that in every generated tree a subset of features is generated randomly. Regression is the 

task to which Random Forest is employed in this thesis. Random Forest regression follows the 

simple concept of regression but when in linear regression the function is known and steps can be 

traced the function of Random Forest regression is like a blackbox – internal workings are unknown 

[4]. For one data point each one of the trees predicts a value. Final output is an averaged value 

across all of the predicted values. This is contrary to Random Forest classification where output is 

determined by majority-voting system  [4]. In this way not only accuracy is improved but also the 

stability of the model, because it is less likely for any change in the data set to impact on the whole 

“forest” of trees.  

2.3.2. Artificial Neural Networks 

A Neural Network is made of artificial neurons – perceptrons as suggested by M. Minsky and S. 

Papert  [23] – that receive and process input data. Artificial Neural Network (ANN) consists of hidden 

layers of neurons. The most basic ANN has 3 layers: input layer, hidden layer and output layer 

(Figure 6). The process starts when input data is fed into the model. Data is then processed via its 

layers to provide desired output.  
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Figure 6 Structure of Artificial Neural Network [5] 

Neural Network learns from the data and its structure and gives output. There are three categories 

of learning. When the data – the inputs and outputs – are labelled the method is called supervised 

learning because model is trained on how to interpret data  [5]. Unsupervised learning is when ANN 

learns without human intervention and the data is not labelled. The output is determined only based 

on patterns identified within the fed data. When ANN learns depending on feedback received from 

the user it is called reinforcement learning  [5]. For the purpose of this research supervised learning 

will be used. Neuron – perceptron  [23] – is a node that receives multiple signals and gives one 

output signal (Figure 7).  

 

Figure 7 Construction of an artificial neuron 

It is important to standardise or normalize the input values so that the neuron will be able to process 

them way easier. Every input signal has assigned weight. Weights are the point in which ANN learn 

by calculating a function called “cost function” which compares the actual output value with 

predicted one and adjusting the weights. The goal is to minimize the cost function. Alongside with 

the weights activation functions are the tools that trigger the neuron. There are a few different 

activation functions which can be divided into two groups: linear and non-linear  [6]. Linear functions 

will not be confined by any range. The most used functions right now are Sigmoid and ReLU (Figure 

8) where the latter is gaining even more popularity  [6].  
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Figure 8 Activation functions: Sigmoid and ReLU [6] 

Sigmoid function exists between 0 and 1. Its shape is the main reason it is used in prediction of 

probability as an output. ReLU on the other hand is rectified till point 0. This means that any input 

value which is lower than 0 will be automatically set to 0. This causes and issue of not mapping 

negative values correctly and decreases the ability of the model to fit or train from the data properly. 

The problem was solved with introduction of Leaky ReLU with additional variable which for negative 

values is set usually to 0.01  [6]. 
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Chapter 3 

Methodology 

3. Methodology 

This chapter describes the consecutive steps that has been undertaken in this thesis. First the procedure 

of turning energy certificates into archetypes and models. Then the description of what is modelled – 

the zones. Next the procedure for calibrating and how the models will be compared, followed by the 

procedure of data feeding into the models. Finally the description of how the different models has been 

built. 
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3.1. Montalegre case study 

The town of Montalegre has been chosen for the case study an testing the first prototype. It is a town 

located on the very North of Portugal in district Vila Real along the border with Spain. At the level of 

1000m above sea level Montalegre has a cool Mediterranean climate. There is a short dry season in 

summer but overall, plenty of precipitation. Average annual temperature is around 10ºC. But this town 

is known for extreme weather events both in winter and in summer. Local agencies have been 

developing very actively adaptation strategies to climate change. The weather data for the prototype 

and for the purpose of this thesis has been collected in nearby town of Braganca in 2019. It has 

municipality with large share of old population (Table 1) 

 

Table 1 Population structure in Montalegre  [24] 

Age Group Year 2001 (resident pop.) Year 2011 (resident pop.) 

0 – 14 years old 1.666 1.003 

15 – 64 years old 7.609 6.053 

65 and over 3.487 3.481 

3.2. Energy Performance Certificates into models 

Energy Performance Certificates (EPCs) for buildings in this town has been collected by Portuguese 

Energy Agency (ADENE). EPCs have detailed information about the dwelling construction solutions and 

other relevant data for its energy simulation. It contains typology, year of construction, construction 

solutions and information about heating and cooling systems. Following the division per construction 

period followed by the ADENE based on construction booms, new milestones in building regulations, 

nine construction periods were considered: 1919-1945; 1946-1960; 1961-1970; 1971-1980; 1981-1990; 

1991-1995; 1996-2000; 2001-2005; after 2006. The specification of each archetype is shown in Table 3. 

This periods’ definition was stablished considering the similarity of construction solutions for those 

periods. As it is impossible to simulate each building of large urban area, there is a need to use this 

simplified approach in building energy simulation, usually called building archetypes  [25] [26]. Such 

solution introduces an inaccuracy error. Thus the resulting output from models is not expected to be of 

spectacular accuracy when compared to real measurement, rather a behaviour that reflects in general 
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the temperature inside the envelope is an objective.  The RELIABLE project aims to forecast extreme 

weather events (EWE) impact on indoor temperature and following next step in the future proceeding in 

the project - the impact on the dwellers. 

3.3. Monitoring Campaign 

The data for case study has been collected using HOBO® U-12-011data logger (Figure 9) which was 

calibrated in temperature chamber by the National Laboratory for Civil Engineering. Table 2 Monitored 

parameters, equipment used and resolution of measurement  shows the specification of the device. The 

location of the device was living room or bedroom since those are the rooms that are occupied for most 

of the time. The position of the device has been carefully chosen to not have any direct sunlight exposure 

on the device and to not be in the vicinity of heat sources.  

 

Figure 9 Indoor temperature and relative humidity sensor by HOBO®  [7] 

 

Table 2 Monitored parameters, equipment used and resolution of measurement  [7] 

Monitored Parameters Equipment Resolution 

Temperature ( ℃ ) 

HOBO U-12-011 

0.03℃ at 25℃  

Relative Humidity 0.03% RH 

 

Measurements were conducted every hour for 43 days in the period from 12.05.2019 to 24.06.2019. 

3.4. The basic model 

When performing a building energy simulation, it is crucial to define several inputs regarding the building 

geometry, construction solutions, schedules of occupancy and internal gains of the building. To define 
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the geometry of the building model (one per archetype) EPCs provide information about the floor area 

and height of the dwelling as well as the number of floors. From this information it is possible to calculate 

the width of square box and draw the building zone. Both models – 5R1C and Energy Plus – have an 

option to provide a schedule of occupancy. It is hard to say how such a schedule should look like and it 

is rather obvious that in each dwelling it looks differently. It was therefore assumed that for the model to 

predict EWE which may be harmful to elderly people – those of the age 65 and older – the schedule 

assumes to have one occupant all the time in the dwelling, for the night the number of occupants is 

increased to three people. This was done on the assumption that the young occupants are either working 

or at school and the older occupants remain at home most of the time. Occupancy influences the indoor 

temperature because humans also emit heat to the environment. It is not a significant amount of heat 

(around 100W  [27]) but when more occupants are present the overall indoor temperature is influenced 

by the heat produced by their bodies. 

 

Table 3 Archetype’s description derived from Energy Certificates database for Montalegre 

Period of 

construction 

floor 

area 

average 

height 

number 

of floors 
U- walls U-roof U-floors U- window 

solar factor 

(g-value) 

Window 

Wall/Ratio 

1919-1945 99.7 2.6 2 1.85 2.67 1.82 4.4 0.9 8% 

1946-1960 103.0 2.7 2 1.87 2.59 1.61 3.9 0.9 9% 

1961-1970 93.5 2.5 2 1.59 2.45 1.90 4.3 0.9 10% 

1971-1980 91.4 2.5 2 1.59 2.36 1.81 4.2 0.9 10% 

1981-1990 140.7 2.7 2 1.32 2.13 1.98 4.1 0.9 12% 

1991-1995 132.7 2.7 2 1.30 2.25 1.67 3.6 0.8 12% 

1996-2000 117.8 2.6 3 1.18 2.21 1.60 3.5 0.8 15% 

2001-2005 135.3 2.6 2 0.93 1.61 1.17 3.5 0.8 14% 

after 2006 141.3 2.7 2 0.80 1.07 1.08 2.8 0.5 22% 

 

To simulate the indoor temperature in Energy Plus one needs to provide a 3D model of the dwelling to 

the software. Developers of Energy Plus software recommend OpenStudio a plugin for Google SketchUp 

[28] for the design of the dwelling since it is free, simple to use and allows running Energy Plus simulation 

directly from Google SketchUp. There were nine cubes created (Figure 10). Each one has been 

designed according to the archetype specification.  
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Table 4 Flow chart of methodology used in research 

 

 

 

 

Figure 10 One of the cubes designed in Google SketchUp. 

Montalegre buildings have mostly two floors therefore, the. archetypes are modelled as two cubes 

connected in such manner that ceiling of the bottom one is the floor of the upper one. The surfaces of 

the cube were given unique names. Next, in the Energy Plus Launch Document, those surfaces were 

assigned features according to EPCs. The weather file used for simulation had information about the 

weather from the previous year. Data was collected in Braganca near Montalegre. The general 

methodology applied for the research is shown in Table 4. 

Models 
Comparison

Artificial 
Neural 

Network 
model

•Preliminary 
simulation

•Patch dropped 
due to not 
enough 
weather data

Machine 
Learning 
Random 

Forest model 

•Preliminary 
simulation

•Attempt to 
improve the 
results

Final input 
data text file 

for 5R1C

•Model 
Calibration

•Final 
Simulation 
and results 
from 5R1C 
model

Sensitivity 
analysis

•Iterative 
simulation 
and removal 
of 
unnecessary 
parameters 
from weather 
file

5R1C basic 
model based 
on EPCs and 

EP results

•Changes in 
code to tailor 
it for the 
needs of this 
research

•Preliminary 
simulation

EnergyPlus 
(EP) 

simulation 
for all 

archetypes
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3.4.1. 5R1C 

The basic code (application) for the model has been accessed through github.com. It has been created 

by the Department of Architecture and Building Systems of the ETH Zürich  [29]. The code has been 

than tailored for the needs of the research.  

After creating a loop in the code to read data for the 9 archetypes a first preliminary run has been 

conducted. As presented on the Figure 11 below the temperatures are quite high in comparison to the 

data acquired by the means of HOBO device.  

 

Figure 11 Result from 5R1C model after first test run with comparison to HOBO measurement 

Moreover, the lines for each of the archetypes are rather close to one another which suggest there is 

almost no distinction between archetypes. Therefore, there was the need to conduct a sensitivity analysis 

to better understand the simulation parameters and outputs. 

3.4.2. Sensitivity Analysis 

Sensitivity analysis has been conducted to get a sense of how various input variables impact the output. 

It has been done by running the simulation nine times for the same weather period, with identical values 
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for parameters besides the one under investigation, which has been changed slightly in every simulation. 

The purpose of sensitivity analysis was to fine-tune the model. After preliminary simulation it turned out 

that the model is returning much higher temperatures than expected. It was hard to tell what impacts 

the results the most. 

 

Figure 12 Sensitivity analysis chart. One dot defines one simulation run, one line presents how the output 

temperature has been changing with the change of given parameter. Lines are not correlated among each other 

and should be considered separately.  

Figure 12 represents the entire sensitivity analysis. The graphs with output indoor temperature from 

sensitivity analysis of each consecutive parameter are in the appendix. The lines have been put together 

into one chart for the ease of comparison. One dot represents one simulation, one line represents how 

the output temperature has been changing throughout the sensitivity analysis. U wall and U window are 

the heat transfer capacities of walls and windows. Values of those two parameters has been decreasing 

with each simulation. Ventilation represents controlled air exchanges per hour and its value was 

increasing with each simulation. Infiltration represents the unwanted air exchanges due to 

imperfections/cracks of the envelope; its value has been increasing with each run. Size of the envelope 

was combined with Thermal Capacity, because Thermal Capacity is defined as “per floor area” 

therefore, with the increase of size of the envelope – floor area – the thermal capacity is decreasing. 

Ventilation efficiency value has been increasing and it represents the wellness of heat recovery from 

ventilation. It can be concluded quite easily that the biggest impact on the output temperature comes 
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from the infiltration and ventilation parameters. As an outcome from sensitivity analysis the infiltration 

parameter has been tuned to bring the output temperature into the vicinity of the real measurement.  

The outcome of the sensitivity analysis is pointing to the infiltration and ventilations parameters which 

were not measured by any device. Manipulation of those parameters helped moving the temperatures 

into more reasonable range. This information forced the researcher to assume infiltration value to be 2.5 

air exchanges per hour. The same was applied to every archetype. 

 

3.5. Data input procedure in models 

To provide data into EnergyPlus it is needed to specify the features of each component. The thermal 

properties of walls and windows. The weather file is supplied by specifying the patch to the file. The 

output from this software may be a CSV file with the output data that you first specify in the software.  

Providing data into the RC model is quite different. Since the RC model is not software but a code written 

in Python, the data is read from an external CSV file. The unique parameters that must be provided to 

the program are the geometry of the envelope namely the areas of floors, walls and windows and the 

thermodynamic parameters: heat transfer coefficient [described as U in datasheet] for the walls and 

windows and thermal capacitance per floor area of the dwelling. Additionally, parameters like lighting 

utilization factor, the coefficients for ventilation and infiltration as well as ventilation efficiency can be 

specified if known. If the additional parameters are not provided externally the program will apply default 

values. The program has also an option to set the temperature for turning on heating or cooling. 

However, in this case it was assumed that there is no heating nor cooling in the building. Ventilation 

efficiency describes recuperation of heat which was also assumed to be 0. RC model considers the 

irradiation of the sun. Therefore, the transmittance of sunlight and radiation for the windows needs to be 

set. In this case, the transmittances were not known and the values from EP were taken and introduced 

into the RC model. Gains per person are also considered and a schedule of occupancy is needed for 

that. Such a schedule for the RC model was built from scratch and it does not take into account holidays 

and was simulated in such way that for 8 hours a day all habitants but one leave the dwelling.  

3.6. Model calibration 

Results from simulation were compared with real measurements conducted in a house belonging to the 

second archetype (1946-1960) in Montalegre. Measurements were conducted from the 12th of May to 
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the 26th of June. The device used to measure the indoor temperature is widely used temperature logger 

HOBO. It has to be assumed that during this period in the house, windows could have been opened and 

most probably some heating was applied which influences the measurements. Unfortunately, the 

measurements did not take into account abovementioned events, therefore measurements were treated 

like for dwelling with closed windows. 

To compare the results two statistical indicators were used: Mean Bias Error (MBE) and Coefficient of 

variation of the Root Mean Square Error (Cv(RMSE)). MBE measures how closely the simulated data 

coincide with the measured data. It is an overall bias measure of the data. As shown in the equation (1) 

below it is the total sum of the difference between simulated and measured values in the considered 

period (one hour). The sum of differences is then divided by the sum of the measured values.  

 

 𝑀𝐵𝐸(%) =
∑  (𝑆−𝑀)𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑃𝑒𝑟𝑖𝑜𝑑

∑  𝑀𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑃𝑒𝑟𝑖𝑜𝑑
 × 100%  (1) 

The final values are compensated (reduced) by negative values if present. Due to this compensation 

effect, MBE is often represented together with Cv(RMSE). The Coefficient of RMSE is calculated as the 

Root Mean Square Deviation (RMSD) normalised to the mean of observed values To put it simpler, 

Cv(RMSE) measures either the variability between measured and simulated data or goodness-of-fit of 

the model. It specifies overall uncertainty in prediction reflecting the size of the error. It is always positive 

and it is insensitive to the compensation effect. The lower Cv(RMSE) the better the calibration of the 

model. It is calculated as follows: 

 𝐶𝑣(𝑅𝑀𝑆𝐸) =
𝑅𝑀𝑆𝐸𝑃𝑒𝑟𝑖𝑜𝑑

𝐴𝑃𝑒𝑟𝑖𝑜𝑑
 × 100%  (2) 

 𝑅𝑀𝑆𝐸𝑃𝑒𝑟𝑖𝑜𝑑 = √
∑(𝑆−𝑀)𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

2

𝑁𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
  (3) 

 𝐴𝑃𝑒𝑟𝑖𝑜𝑑 =
∑ 𝑀𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑃𝑒𝑟𝑖𝑜𝑑

𝑁𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙
  (4) 

where 𝑁𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 is the number of time intervals considered for the monitored period. 

A model is considered as ‘calibrated’ if the abovementioned indices meet the criteria set by the ASHRAE  

[30] (Table 5): 

 

Table 5 Acceptable tolerances defined by ASHRAE Guidelines 

INDEX ASHRAE 14 (%) 
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Cv(RMSE) 15 

MBE ±5 

 It is important to mention that those values are not strictly set and are only guidelines to give an idea of 

how good is the model. 

3.7. Machine Learning model: Random Forest 

The next step, after having the 5R1C model tuned up, was to build a Machine Learning (ML) model 

based on the output from 5R1C. Machine Learning models need to be trained before being able to 

produce reliable results. To do that a set of carefully selected features, together with the output they 

produce, needs to be provided. The model finds patterns in the input data and learn what output should 

particular input produce. This method is called supervised machine learning. Weather file in EPW format 

has 35 parameters. Giving them all into the model as input would be utterly witless. The output from 

training on such a set of data would produce exact results as the provided input training output. Such a 

situation is called overfitting. In other words: the model is sensitive to noise. Overfitted model cannot 

correctly predict any results, because it is tailored for only one set of data. The solution to this is feature 

selection.  

3.7.1. Feature selection 

The set of 35 parameters in weather file was carefully investigated. First, each parameter, visually to 

have an idea of how it is behaving. Then, by the use of a built-in method for parameter selection in 

regression models – backward elimination. This method required running one simulation after another, 

analysing scores which showed how important a given parameter in a given set of parameters is or what 

influence on the output it has. Consecutive runs were conducted after the removal of the parameter with 

the highest significance score - P-value. P-value is the probability value for a given statistical model that, 

if the null hypothesis – general statement that there is no correlation between two measured phenomena 

– is true, a set of statistical observations are greater or equal in magnitude than the observed results. In 

other words an assumption is made – the null hypothesis - that given combination of variables do not 

have any effect on dependent variable. Then P-value is calculated and variable with P-value higher than 

the arbitrary selected threshold is removed from the dataset. Abovementioned steps are repeated until 

a set of features with which the overall performance of the model is in the acceptable range. Basing on 
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the experience of the python society the P-value has been set to 0.05 (5% significance). After conducting 

feature selection, a set of 6 features was selected. Result of the training is presented on Figure 13. 

 

A common practice in regression models is using the information from the previous step. However, in 

this case, such practice created overfitting. The model was able to predict the output with almost 100% 

effectiveness basing only on dry bulb temperature. Due to this tendency model build for this work does 

not use the information from the previous step. 

3.7.2. Artificial Neural Network 

The basic structure for ANN was written in Python using TensorFlow library. Building the structure is 

quite simple but creating a model that is supposed to forecast behaviour of nine archetypes is much 

more complicated and time consuming since the approach here is separate ANN model for each 

archetype. Training each ANN is time consuming. Since the weather data was for one year, it was 

shuffled in order to give the ANN a “sense” of different output temperatures and parameters influencing 

the output. This resulted in shuffled sample for testing and therefore a discontinuous resulting data. Due 

to limited time resources and results far from acceptable level a conclusion was made that sample of 

Figure 13 Random Forest training result 
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one year is not enough to properly train the ANN, the investigation of ANN usage for EWE prediction has 

been stopped and the results will not be presented here. 
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Chapter 4 

Results 

4. Results 

Discussion about the results. Comparison between models and correlation between real measurements 

and model results. 
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4.1. Discussion about the results 

The results from the three models were compared for the period from 12.05.2020 13:00 to 24.06.2020 

23:00 for which the real measurement was conducted. The house in which the measurement using 

HOBO was done is of the archetype 1946-1960. The temperatures for the rest of the archetypes will be 

shown also. 

The chart presented below (Figure 14) shows comparison between models and real measurement for 

archetype 1946-1960. Lines which are semi-transparent shows results hour by hour. Each of such lines 

has bold line that was created using moving average method for 24h periods. The main purpose of this 

graph is to show the behaviour of each model for easier comparison with another and the real data. 

What is standing out here is the Orange RC model. This is the model before adjusting it with infiltration 

values. Adjusted 5R1C model, ML Random Forest and Energy Plus are following almost perfectly the 

real HOBO measurement. What is interesting is that Energy Plus reacts in much more “real” way – 

influence of thermal capacity – to the changes of outside temperature shown with thin purple line. Of 

course there are also other parameters influencing the model but outside temperature has the biggest 

share in abovementioned impact. Moreover, Energy Plus did not react as drastically to the sudden 

increase of temperature – at the right hand side of the chart – as RC model did. Surprising is that ML 

Random Forest also did not react as drastically although it was build based on RC model. The 

discrepancy between Energy Plus and RC models stems from the way they handle parameters. RC is 

simplified model thus such outliers are not concerning.  
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Figure 14 Models comparison with HOBO measurement and outside temperature 

 

Comparing the results from different models with the real measurements a really good fit can be 

observed. Of course there are some fluctuations between models but the overall outcome is very 

satisfactory. But from where are those differences coming? It stems out from the methodology and 

theory behind models. It can be seen that EP has a tendency to rather delay the peaks. This is due to 

two things. First the way the model handles thermal capacity, second the amount of weather information 

it receives. EP takes into account all the data from weather file. Where RC as simplified model requires 

only few of them. The ML model is showing potential for further investigation. Although for the current 

amount of data the results are not as good as from 5R1C, with larger sample of data the output can be 

greatly improved. 

4.2. Energy Plus 

The Energy Plus results are one of the most uniform results (with low amplitude of oscillations). This 

model shows that the archetypes with the lowest variations in temperature are the archetypes 1919-

1945, 1946-1960 and 1961-1970. In terms of indoor temperature those are showing the biggest similarity 

to one another. This tendency is also pronounced in the results from 5R1C model. This phenomenon is 
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connected to significantly higher thermal capacity of those archetypes. It is around 1350 kJ/m2K for 

1919-1945 and 1946-1960 archetypes and 802 kJ/m2K for 1961-1970. When the thermal capacity of the 

rest of the archetypes is between 290 and 312 kJ/m2K. Energy Plus results are almost perfectly in phase 

with the real measurement. 

 

Figure 15 Energy Plus results for one week in May. 

4.3. 5R1C 

The most significant thing which bring 5R1C ahead Machine Learning models is that it takes into account 

only a few arbitrarily chosen parameters from weather file. It helps save significant amount of time on 

feature selection, but on the other hand it seems that there is less control over the model. 

Figure 16 show the results from RC before tuning it with infiltration values. It can be seen that the values 

of temperature for each archetype more or less are around the same values. When infiltration value was 

introduced – such to bring the graph as close to the real measurement as possible which is 2.5 air 

exchanges per hour– the lines for each archetype are more spread and it looks more like real situation. 

Infiltration has been chosen due to the fact that the data collected is from various periods of time and 

the standards in this times were changing over time and some parameters were not considered. The 

infiltration parameter impacts the temperature amplitude between day and night which is visibly higher. 
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Moreover it introduces distinction between archetypes. This proves that although here infiltration 

parameter has been assumed arbitrary it should be measured and included into thermal characteristic 

data set of buildings or even as one of parameters measured as a part of EPCs. What is standing out 

from the result is the difference in temperature amplitudes between archetypes. 1919-1945 and 1946-

1960 are the archetypes that present the lowest variations in temperatures. This is of course due to high 

thermal capacity. This two archetypes show almost the same output. Such situation stems out from the 

different standards in construction industry throughout the years and the fact that the calculated thermal 

capacity may be inaccurate in this case. Conclusion is that thermal capacity of buildings should be 

carefully investigated further as it is – together with infiltration and ventilation parameter – one of the 

most important parameters influencing the final output from the models. 

When Comparing Energy Plus with 5R1C, the profile of temperature is very pronounced in the simplified 

model. It has a tendency to have very high oscillations for summer months when compared to the colder 

months. Another vivid conclusion that stems out from the results is that 5R1C model has a tendency to 

move out of phase quite drastically – this can be seen on the graph were comparison to HOBO is – the 

authors guess is that this is because of the input radiation values. The model reads them but in the real 

measurement those seem to have no influence on temperature. The question is “why?” Maybe there is 

a shadow cast on the dwelling which prevents the building to collect the heat from sunlight radiation. 

Moreover, the oscillations are higher in lower thermal capacity classes, which brings a conclusion that 

5R1C model may be a good choice for the higher thermal capacity classes, since the results may be 

more reliable. This result proves other research conducted for Mediterranean weather conditions where 

Roberto Bruno et al. came to similar conclusions  [21].  
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Figure 16 5R1C result graph for one week in May before fine tuning the model with infiltration values 

 

 

Figure 17 5R1C results after introduction of infiltration value. 
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Figure 18 5R1C results for the first 7 days of February 

 

Figure 19 Energy Plus results for first 7 days of February 
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4.4. ML Random Forest 

What can be seen almost immediately is that the resulting graph on Figure 20 is not as smooth as the 

5R1C or Energy Plus models. The result gives some idea of the level at which the resulting temperatures 

are. High accuracy is not as demanded as distinction between archetypes which Random Forest was 

unable to do, at least for the data provided. In 5R1C archetypes have very pronounced distances on the 

graph. What is interesting is that even that the model was built on 5R1C output data, the period in 

February shown on Figure 21 is more similar to Energy Plus output than 5R1C. It is hard to give any 

reason why this happened besides the one that 5R1C was build based on Energy Plus output however, 

this process should already introduce some error. Overall the result is good, but lack of the ability to 

distinguish between archetypes disqualifies this model.  

 

Figure 20 ML Random Forest results for 7 days in May with comparison to HOBO 
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Figure 21 ML Random Forest results for 7 days in February 

4.5. Artificial Neural Network 

There was an attempt made to create ANN model however, due to time constraints and what the author 

concluded from the preliminary results, a decision was made to not pursue this topic. The historical data 

for one year back was not enough to simulate future temperature occurrences. Good practice in ANN 

field in forecasting weather events is to have at least 2-3 years of data on which the model can learn 

different relations and conditions.  

4.6. Model Calibration results 

Cv(RMSE) scores were calculated on different stages during the research. Introducing some changes 

into the model resulted in change of the score. Interesting is that when “improvement” was introduced 

and visually the graph looked much more like real values the Cv(RMSE) score showed that the 

correlation is weaker. The comparison is presented for 2 archetypes when comparing models to the real 

data. Then comparison between EnergyPlus and 5R1C is presented for the same two archetypes. 
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Table 6 MBE and Cv(RMSE) scores of comparison of model with real measurement 

` EnergyPLUS 5R1C - 2 floors 5R1C - 1 floor 

 1919-1945 1946-1960 1919-1945 1946-1960 1919-1945 1946-1960 

MBE -11.06% -4.02% -12.29% -12.35% -18.08% -18.07% 

Cv(RMSE) 18.73% 12.90% 15.49% 15.60% 21.46% 21.43% 

 

The scores from EnergyPLUS for 1946-1960 archetype indicate that here the performance was the best 

and within the ASHRAE guidelines. The real measurement has been conducted in dwelling from 1946-

1960 period. Comparison has been done for two archetypes to check and confirm that the 1946-1960 

archetype is the correct one due to the fact (described in section 4.3) that those two archetypes showed 

very similar results. Scores for 5R1C model are different and not quite good. There is distinction in 5R1C 

model, because it was first calculated as 1 floor building and then as two floor building as the real 

dwelling. In EnergyPLUS 2-floor construction is set by the 3D model configuration. In 5R1C this issue 

was resolved by doubling the wall and floor areas of the dwelling and increase in thermal capacity. This 

introduces and error because 5R1C has no option to assign the additional wall(ceiling/floor) between 

floors nor the thermal parameters between the two floors. Hence a conclusion can be made that 5R1C 

treats the geometry as one big room. However, the impact of such error cannot be measured in this 

case. Nevertheless resulting score for 5R1C is satisfying and is on the verge of ASHRAE guidelines when 

it comes to Cv(RMSE) but not when MBE value is considered. There is also almost no difference between 

two archetypes in both 5R1C methods which confirms what has been said earlier that there is a need to 

carefully investigate infiltration and ventilation as well as thermal capacity of each archetype. 

 

 

Table 7 MBE and Cv(RMSE) scores of comparison EnergyPLUS and 5R1C models 

 

5R1C 5R1C – Increased Infiltration 
 

1919-1945 1946-1960 1919-1945 1946-1960 

MBE -8.98% -9.05% -3.15% -3.13% 

Cv(RMSE) 12.28% 12.44% 10.39% 10.57% 

 

There was higher correlation of those models and real measurements than between models. Correlation 

is higher when infiltration values are introduced. The lack of correlation may be stemming from high 

oscillations of 5R1C. On the other hand when looking at the Figure 14 it seems like the models are close 

to one another. Scores are within ASHRAE guidelines range, but the goodness of fit was expected to be 
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higher. The MBE value is quite low here which indicates that values are quite close between those two 

models. 

4.7. Computing time 

All the simulations were done on a personal computer Asus TravelMate-P with Intel Core i7-5500U CPU 

at 2.40GHz clock speed, 8GB RAM and 64bit operating system. It is obvious that the computation times 

will depend on the hardware used. Times are given for whole year simulations for one archetype in Table 

8. 5R1C simulated all archetypes one after another, and what is interesting the last simulation took twice 

as much time as the first one. After consultation with software engineer there is a suspicion that the 

increase in computation times may be due to less memory available after each computation. This may 

be due to the way how saving results to a file is handled because the memory buffer is not cleared after 

each write method. This issue is not crucial at this point of research but when the future app is 

considered it may generate problems with the flow of the model. 

 

Table 8 Computing times of the different simulation tool used 

Model Average Time 

Energy Plus ~8.41 s 

5R1C ~4.55 s 

ML Random Forest ~5.58 s 
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Chapter 5 

Conclusions and 

recommendations 

5. Conclusions and recommendations 

Conclusions from research and results discussion. Recommendations for future researchers. 
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5.1. Conclusions 

In this work different tools were used to simulate the indoor temperature of nine building 

archetypes. All of the models show potential, but some of them (like Machine Learning) need a 

bigger amount of training data and more time and effort to properly train and calibrate. Simplified 

model 5R1C has proven to be a good substitute to more sophisticated model like EnergyPlus. 

5R1C showed outstanding performance in result-to-computing-time ratio. Energy Plus gave – as 

expected – the most accurate results, but the time and the effort that has to be put to configure 

the model is too high when considered future automatization of model. 5R1C is quite friendly and 

easy to use even for a newbie when it comes to supplying the data into the model and 

automatization process. The ease of editing text file is a very bright point of the model. The natural 

choice when considering automatization is Machine Learning. Random Forest gave good results 

but not very reliable nor consistent due to shattered sample of data resulting from a small data 

sample and the need for dividing the sample into train and test samples. ANN would be a great 

choice, but for that a much bigger sample of data is needed to train the model properly.  

For the purpose of RELIABLE project 5R1C is good choice since it produced satisfactory results 

confirmed by calibration scores MBE and Cv(RMSE). In the future switch to ML or even ANN 

should be considered under the condition that enough data for training of the models is gathered. 

The almost twice shorter time of computation of 5R1C model shows that there is potential to 

conduct nationwide simulation as Portugal has more than 3 million buildings.. 

5.2. Recommendations 

It is recommended to run the simplified model in RELIABLE project and simultaneously collecting 

data about the buildings over a larger period of time, weather data and training ANN. Over time – 

sources claim that a batch of 3 years of data is enough to get reliable results from neural network 

model – ANN would be ready to replace other models. A study solely focused on ANN 

performance using bigger batch of real data would be highly appreciated in the area on which 

RELIABLE project is focused. Moreover a database of real in-building measurement data 

(temperature, humidity, CO2 levels) from various archetypes would dramatically improve the 

output of models. Especially the output of ANN model. Same approach with bigger database 

should be applied to other Machine Learning models to check if they will produce satisfying 

results. Machine Learning is a very broad area that has much more options to investigate. The 

tool created can be used not only by municipal services to predict the outcome of indoor 

temperature during EWE but also as a part of smart home systems to control HVAC equipment, 
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electronic blinds or systems for plant watering and gain control over energy usage at homes. It 

can be also used to design or redesign homes to make them more energy efficient. 

5.3. Limitations of this work 

The time frames in which this research has been conducted was rather short when considered 

the possibilities of 5R1C and Machine Learning. The results could have been even better if the 

parameters of the models were assigned much more carefully. For example, individual infiltration 

values for each archetype – this should be investigated further and measured since it impacts the 

output. As well as individual thermal capacities should be investigated further. Computing times 

of 5R1C could have been improved with optimisation of the simulation code in Python. Also, the 

performance of the tool created could have been checked in other locations since the data for 

building in Lisbon has been prepared within the RELIABLE project. This would cast some light on 

the versatility of the model and the ease of adaptation to new localisations. 
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Table 9 Input data for 5R1C model (archetypes description) 
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1919-1945 9.04 120.38 99.72 255.54 228.16 2.00 300.00 0.44 0.90 1.08 4.39 0.50 2.50 0 1367195.44 1.00 90.00 0.837 0.898 2.56 72.50 

1946-1960 10.34 124.82 103.02 277.49 244.23 2.00 300.00 0.44 0.90 1.09 3.89 0.50 2.50 0 1348692.54 1.00 90.00 0.837 0.898 2.69 67.90 

1961-1970 11.64 114.16 93.47 237.07 301.00 2.00 300.00 0.44 0.90 0.65 4.30 0.50 2.50 0 802160.09 1.00 90.00 0.837 0.898 2.54 97.00 

1971-1980 11.03 112.17 91.44 230.78 266.64 2.00 300.00 0.44 0.90 0.44 4.17 0.50 2.50 0 318471.99 1.00 90.00 0.837 0.898 2.52 75.60 

1981-1990 17.76 144.26 140.67 380.75 250.64 2.00 300.00 0.44 0.90 0.34 4.08 0.50 2.50 0 292047.33 1.00 90.00 0.837 0.898 2.71 55.04 

1991-1995 16.31 137.29 132.70 351.99 334.49 2.00 300.00 0.44 0.90 0.33 3.63 0.50 2.50 0 295008.74 1.00 90.00 0.837 0.898 2.65 110.44 

1996-2000 15.64 116.91 117.77 303.69 189.91 2.00 300.00 0.44 0.90 0.44 3.49 0.50 2.50 0 296994.40 1.00 90.00 0.837 0.898 2.58 49.27 

2001-2005 16.19 135.32 135.26 348.65 229.32 2.00 300.00 0.44 0.90 0.33 3.50 0.50 2.50 0 290881.15 1.00 90.00 0.837 0.898 2.58 78.24 

after 2006 25.74 136.55 141.32 375.71 291.18 2.00 300.00 0.44 0.90 0.28 2.83 0.50 2.50 0 285339.28 1.00 90.00 0.837 0.898 2.66 81.14 
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Figure 22 Sensitivity Analysis -  Envelope Size 

 

Figure 23 Sensitivity Analysis – Infiltration 
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Figure 24 Sensitivity Analysis - Total Internal Area and Thermal Capacity 

 

Figure 25 Sensitivity Analysis - Thermal Capacity 
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Figure 26 Sensitivity Analysis - U wall 

 

Figure 27 Sensitivity Analysis - U windows 
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Figure 28 Sensitivity Analysis - Ventilation Efficiency 

 

Figure 29 Sensitivity Analysis - Ventilation 
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